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Abstract

In an uncertain world, a rational planning agent
must simultaneously reason with uncertainty about
expected outcomes of actions and preferences for
those outcomes. This work focuses on system-
atically exploring the interactions between prefer-
ences for the durations of events, and uncertainty,
expressed as probability distributions about when
certain events will occur. We expand previous work
by representing events and durations that are not
under the control of the agent, as well as quanti-
tative beliefs about when those events are likely to
occur. Two reasoning problems are introduced and
methods for solving them proposed. First, given a
desired overall preference level, compute the like-
lihood that a plan exists that meets or exceeds the
specified degree of preference. Second, given an
initial set of beliefs about durations of events, as
well as preferences for times, infer a revised set of
preferences that reflect those beliefs.

1 Introduction
Rational agents are capable of mentally exploring the inter-
actions between what they believe and what they desire as
outcomes of actions. More often than not, the value of the
outcomes of actions cannot be described by a single attribute,
but rather by attributes that combine to determine the overall
value of the outcome[8]. Furthermore, the outcome of ac-
tions may not be known with certainty, as a result of the need
to interact with the world.

Many practical planning or scheduling problems surround
events that are not controlled by the planning agent. For ex-
ample, Earth Science observation scheduling may involve as-
signing times for the remote sensing of an area of interest on
the Earth either before, during, or after a fire has occurred
within that area. The start and end of the fire are not known
with certainty at planning time, but Earth Science models
might be available to estimate a set of times when fires are
likely to occur. In addition, the scientific utility of an observa-
tion may vary based on when the observation is taken relative
to the fire, resulting in preferences for temporal orderingsand
durations between planned events and uncontrollable events

[13]. As automated planning matures as a software technol-
ogy, new techniques inspired by decision theory are being
integrated to address the fact that plans are executed in the
world, with varying degrees of value to the planner based
on their outcomes[1]. A principled approach to schedul-
ing problems such as the above is essential for a decision-
theoretic temporal planner that takes into account preferences
when determining plan quality.

The goal in this paper is to devise systematic methods for
exploring the interactions between temporal preferences and
uncertainties. We introduce a framework that generalizes the
Simple Temporal Problem(STP) formulation[4], called the
Simple Temporal Problem with Preferences and Probabili-
ties, or STP3. One component of the generalization adds the
capability to express preferences for times, following[9]. The
other component allows for the designation of uncontrollable
events and the associated probability space over times.

Besides defining the STP3 framework, the contribution of
this paper is to describe solutions to two practical reasoning
problems arising from the interactions between probabilities
and preferences. We extend techniques previously used to
solve temporal problems with preferences to identify solu-
tions that are both globally preferred and highly probable.

Decision-theoretic planning is surveyed by[1]. Most ap-
proaches either extend classical planning techniques or em-
ploy Markov Decision Processes (e.g.[3]), in contrast to our
constraint-based focus. Of work on temporal reasoning for
planning, a characteristic example is[7], who, like us, con-
sider exogenous events, but who focus on eliciting probabili-
ties and qualitative preferences from a human expert.

In the constraints literature, preferences are commonly rep-
resented using semiring-based formulations, the approachwe
adopt. An alternative formulation for qualitative preferences
is CP-nets[2]. Uncertainty has also been represented both
qualitatively and quantitatively; probabilistic frameworks in-
clude that of[6], which we adopt, and its extensions.

Generic constraint-based frameworks that account for both
preferences and uncertainty include[5]. Our work is dis-
tinguished by restricting attention to Simple Temporal con-
straints. Prior work in this line has considered STPs with
preferences but no uncertainty[9]; and STPs with uncertainty
constraints but no preferences[12; 17]. While [15] incorpo-
rate both aspects, that work considers only qualitative uncer-
tainty, that is, with implied uniform distributions.



2 Example: Earth Science Campaign
Observation Scheduling

An Earth Science campaignis a systematic set of activities
undertaken to meet a particular science objective. Here, we
present a hypothetical campaign based on a science objective
to test an emissions model predicting the aerosols releasedby
wildfires. Data on several variables must be gathered in or-
der to accomplish the analysis, and several remote sensors,
such as those on the Landsat satellite, provide data products
at various spatial resolutions relevant to these variables. Pre-
ferred times for acquiring Landsat data for vegetation typefor
a region of interest in the northern hemisphere would be the
prior June or July in the same year that the fire burned, when
forested land can most easily be spectrally distinguished from
grassland. For mapping aerosol concentration, images coin-
cident to burning must be obtained; the Terra and/or Aqua
satellites have relevant instruments. For the burned area,data
should be acquired after (though not too long after) the fire
is out, while for mapping vegetation moisture content, hyper-
spectral data from an EO-1 Hyperion instrument are relevant,
and the most useful data would be that acquired just preced-
ing the fire.

From this description, the inputs to a campaign planning
problem potentially consist of the following characteristics:

• a set of temporal, spatial, and resource constraints on
when and where images are to be taken;

• user preferences for when an observation should be
taken; and

• temporal ordering constraints between planned events
and uncontrollable, exogenous events such as fires.

A reasonable goal, given these inputs, is to generate a con-
cise representation of the set of solutions (assignments of
times and sensing resources) that are maximally preferred and
reflect a set of initial beliefs about when exogenous events are
likely to occur. The next section formulates a framework ca-
pable of describing the problem and generating this output.

3 Simple Temporal Problems with
Preferences and Probabilities

A soft temporal constraintdepicts restrictions on the distance
between arbitrary pairs of distinct events, and a user-specified
preference for a subset of those distances. In Khatib et al.[9],
a soft temporal constraint between eventsi andj is defined as
a pair〈I, fij〉, whereI is a set of intervals{[a, b], a ≤ b} and
fij is a local preference functionfrom I to a setA of admis-
sible preference values.1 WhenI is a single interval, a set of
soft constraints defines aSimple Temporal Problem with Pref-
erences(STPP), a generalization of a Simple Temporal Prob-
lem [4]. An STPP can be depicted as a pair(V, C) whereV
is a set of variables representing events or other time-points,
andC = {〈[aij , bij ], fij〉} is a set of soft constraints defined

1For the purposes of this paper, we assume the values inA are
totally ordered, and thatA contains designated values for minimum
and maximum preference.
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Figure 1: STP3 Representing the Fire Campaign Scenario

over V . An STPP, like an STP, can be organized as a net-
work of variables representing events, and links labeled with
constraint information.

Following recent approaches[6; 12; 17; 15], we extend the
STPP framework to represent temporal uncertainty. First, we
partition V into two groups: thedecision variablesVd and
the parametersVu representing uncontrollable events. We
further distinguish between binarydecision constraints(Cd),
those which the agent executing the plan must satisfy, andun-
certainty constraints(Cu), those which “nature” will satisfy.

An uncertainty (temporal) constraint depicts a duration as
a continuous random variable. To ease the exposition, we
assume that the uncertainty constraints are mutually indepen-
dent2; this allows the constraints inCu to be expressed in
the form 〈[aij , bij ], pij〉, wherepij : [aij , bij ] → [0, 1] is
the probability density function over the designated interval.
We call the framework〈Vd, Vu, Cd, Cu〉, whereCd are soft
constraints, aSimple Temporal Problem with Preferences and
Probabilities, or STP3.

Example 1 Earth Science Observation Problem.Inputs:
Variables inVd standing for two controllable events consist-
ing of taking an observation (Obs1, Obs2), and two uncon-
trollable events inVu, the start and end of a fire (FS, FE)
(for simplicity, observations are viewed as instantaneous), as
shown in Figure 1. There is also an event TR representing
the beginning of time. Soft constraintsf1(t), f2(t) in Cd are
associated with the durations betweenObs1 andFS, and be-
tweenObs2 andFE, respectively. For example,f1(t) may
express that there is no value for takingObs1 after the start
of the fire (FS), and a preference for times that are as close
to FS as possible. Similarly,f2(t) expresses a preference
for Obs2 happening beforeFE as close as possible, with a
penalty if the observation is taken after the fire. Uncertainty
constraintsp1, p2 in Cu are associated with random variables
representing the start time and the duration of the fire. These
constraints are based on Earth Science models about fires in
the area of interest. For example,p1 may express a normal
distribution over the range of times.

2For instance, imagine that the Earth Science planner maintains
a Bayes network elsewhere to express the dependencies; eachprob-
ability p(t) is given implicitly by that network.



A solutionto an STP3 is a set of assignments toV = Vd ∪
Vu that satisfies all the constraints inC = Cd ∪ Cu. Given
an STP3 P , let Sol(P ) be the set of all solutions toP . An
arbitrary solutions ∈ Sol(P ) can be viewed as having two
parts:sd, the set of values assigned toVd, andsu, the set of
values assigned toVu.

Our goal is to develop efficient methods for generating a
concise, graphical representation of subsets ofSol(P ) corre-
sponding to highly likely, globally preferred solutions. This
STP-based graphical representation is called aflexible (tem-
poral) plan. Many planning systems use an STP-based repre-
sentation of the temporal aspects of their plans[16].

Following previous efforts, methods for flexible temporal
planning under uncertainty can be distinguished based on as-
sumptions about the strategy to be applied in executing the
flexible plan. A static execution strategyassumes no ac-
cess to the values ofsu during plan execution; by contrast
a dynamic execution strategyis applied as plan execution
proceeds and the values ofsu are observed over time[12;
15]. The results of this paper assume a static execution strat-
egy; we defer discussions of planning for dynamic execution
of STP3s to future work.

Component Solvers. The solution methods described be-
low are based on different decompositions of an STP3 into
component sub-problems for which efficient solution meth-
ods exist. As a final preliminary, we fix some terminology
and briefly summarize these sub-problem solution methods.
Given an STP3, theunderlying STPPis the problem that re-
sults when a constraint{[a, b], pXY } ∈ Cu is replaced by the
STP component constraint[a, b]. Theunderlying Probabilis-
tic STPis the problem that results when each soft constraint
{[a, b], fXY } ∈ Cd is replaced by the STP component con-
straint [a, b]. Theunderlying STPreplaces all constraints in
Cd ∪ Cu with their STP components.

Efficient solution methods for STPs are well-known[4].
A graphical representation of an STP is a Simple Temporal
Network (STN), a graph of nodes representing the variables
of the STP and edges labeled with the interval temporal con-
straints. Each STN is associated with a distance graph derived
from the upper and lower bounds of the interval constraints.
An STN is consistent if the distance graph does not contain a
negative cycle; this condition can be determined by applying
a single-source shortest path algorithm such as Bellman-Ford.
In addition to consistency, it is often useful to determine for
an STN theequivalentSTN (in terms of a set of solutions) in
which all the intervals are as “tight” as possible. Thisminimal
networkcan be determined by applying an All-Pairs Shortest
Path algorithm to the input network[4].

Previous efforts in solving STPPs have been based on iden-
tifying and applying criteria for “globally preferred solutions”
such as “weakest link” (maximize the least preferred local
preference), “pareto”, and “utilitarian”[10]. Developing effi-
cient solvers has required local preference functions thatare
linear or semi-convex.3 One method for solving STPPs effi-

3A function issemi-convexif drawing a horizontal line anywhere
in the Cartesian plane of the graph of the function is such that the set
of X such thatf(X) is not below the line forms an interval. Semi-
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Figure 2: Illustrating the Interactions between Temporal
Probabilities and Preferences

ciently is called thechop method, first introduced in[9]. The
chop method is a two-step search process of iteratively choos-
ing a preference valueα, “chopping” every preference func-
tion at that point, and then solving an underlying STP defined
by the interval of temporal values whose preference values
lie above the chop line, i.e.{x : f(x) ≥ α}; henceforth, we
refer to this as thechop interval. The highest chop point that
results in a solvable (i.e. consistent) STP produces a flexible
plan whose solutions are exactly the optimal solutions of the
original STPP (based on the criteria of weakest link). Binary
search can be used to select candidate chop points, making
the technique for solving the STPP tractable.

4 Assessing the Likelihood of Achieving
Preferred Plans

This section and the next consider two practical reasoning
problems involving the interactions of uncertainty and pref-
erences about time, and demonstrate how under certain as-
sumptions they can be solved efficiently using STP3s. The
first problem addresses the question:what are the chances of
achieving a certain level of global preference, given my belief
about the way the world will behave?To illustrate, consider
the simple STP3 in Figure 2(a). Here,Vd = {A, B} and
Vu = {C}, and there are two decision constraints, between
B andC and betweenA andB. B is tightly constrained to
occur exactly one time unit afterA. The soft constraintBC
prefers durations betweenB and C to be minimal (higher
values more preferred); this is expressed by the preference
functionf(t) = 4 − t. The probability density function for
AC is represented by specifying the named function (normal)
with mean (3) and standard deviation (1).

Suppose an agent wants to infer the chances of there being
a solution with an overall preference level of 2 or greater. We
can answer this question by restricting assignments toBC
with anf value of 2 or greater, and propagating the temporal
constraints over the network. This means shrinking theBC
interval to[0, 2], which in turn shrinksAC to [1, 3]. Conse-
quently, the answer to the posed question can be obtained by
computingP (1 ≤ t ≤ 3) =

∫

3

1
p(t)dt.

convexity ensures that there is a single interval above any chop point,
and hence that the resulting problem is an STP.
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Figure 3: Why the Upper Bound May Not be Tight

This technique can be generalized for arbitrary STP3s.
Given an STP3 P , to determine the probability of achieving
a solution of global preference valueγ or higher, we perform
the following procedure:

1. Given an input STP3, chop each local preference func-
tion at the designated preference valueγ. Form a new
problem by replacing each associated interval with the
resulting chop interval.

2. Determine the minimal network of the underlying STP
of the new problem, using an All-Pairs Shortest Path al-
gorithm.

3. Compute the overall probability of the underlying prob-
abilistic CSP. Assuming independence of thepij , the
value to be computed is

∏

pij

P (aij ≤ t ≤ bij), (1)

where for each uncertainty constraint,[aij , bij ] is the in-
terval of the minimal network derived from step 2.

Provided step 3, which may be done using numerical in-
tegration, is of polynomial complexity, the whole method
is polynomial. Steps 2 and 3 of this method resemble the
method proposed in[17] for solving Probabilistic STPs. Un-
fortunately, it can be easily shown that the computed value
provides only an upper bound on the probability that the so-
lutions defined at that chop level or above will succeed. That
this is not a tight upper bound can be demonstrated by a
simple example, found in Figure 3. In this example, chop-
ping the preference function at 10 and solving the underlying
STP would not shrink the temporal bounds of the uncertainty
links. Therefore, the probability of succeeding returned by
this method would be 1, although in fact some of the proba-
bility mass is lost as a result of the chop.

Despite these limitations, an upper bound computation
may be useful; if the bound is too low, the planner will be
forced to “lower expectations” of the plan branch under con-
sideration, i.e. its overall expected preference level.

A tighter bound would require examining the mass of the
polytope defined by all the constraints (a similar observation
was made in[17]). Applied to the previous example, we get

P ((0 ≤ AB ≤ 10) ∧ (0 ≤ BC ≤ 10)) from (1), but the
true probability isP ((0 ≤ AB ≤ 10) ∧ (0 ≤ BC ≤ 10) ∧
(AB + BC ≥ 10)) or simplyP (AB + BC ≥ 10), assuming
the bounds. (Note that the AB and BC random variables are
no longer independent under the condition AB+ BC ≥ 10.)
We can reformulate this asP (

∨

x(AB = x ∧ BC ≥ 10 − x))
and calculate it as

∫

10

0

(
∫

10

10−x

p(y)dy

)

p(x)dx.

5 Inducing Preferences from Probabilities
In this section we consider a sort of dual problem to that posed
in the previous section:given current expectations about the
world, how can preferences be systematically adjusted to fit
with those expectations?For example, a preference might
be expressed for a particular gap between an uncontrollable
event such as a volcano eruption, and a remote sensing event.
There may also be a belief, expressed as a probability distri-
bution, regarding when the volcano will occur. From these
inputs, if may be possible to infer a set of preferred (high
utility) start times for the observation.

The solution involves applying the concept of expected
utility from decision analysis[8] to represent induced local
preferences. Once the reasoning is complete, the “output”
preferences on the decision constraints thus reflect both the
preferences of the agent and its expectation about the uncer-
tainty in the world. The solution consists of three steps:

1. Given an input STP3, derive the minimal network of the
underlying STP.

2. Apply a local consistency algorithm (discussed below)
to the resulting STP3 (i.e. with the tightened interval
constraints) to compute the induced preferences.

3. Solve the underlying STPP of the resulting network us-
ing the chop solver to find the globally preferred solu-
tions.

We refer to the set of solutions making up the flexible plan
that results from this method as theexpected globally pre-
ferredsolutions.

To examine the second step in more detail, we mimic the
method oftriangular reductionfound in [12], used to solve
Simple Temporal Problems with Uncertainty (STPUs). We
consider all STP3s as collections oftriangular subnetworks
of the form illustrated by Figure 2(b), where there is a sin-
gle uncertainty constraint onAC with bounds[u, v], and two
decision constraints onAB andBC with bounds[y, z] and
[w, x] respectively. As in the Earth Science example,A might
be the beginning of time,B might be the start of a planned
observation, andC the onset of a fire. The goal is to com-
pute theregressionof pAC overfBC to find the induced soft
decision constraintfAB. (The case in whichAB is also as-
sociated with a soft constraint can be handled as part of the
general solution method discussed later.)

To handle the single triangle case, we need to consider
three possible orderings betweenB andC. We assume that
step 1 of the approach has been applied, so that the triangular
network has been minimized. IfB precedesC (w ≥ 0), then



the induced soft constraint is{[y, z], fAB}, where

fAB(t) =

∫ v

u

f(t′ − t)p(t′)dt′.

Although in general this function cannot be derived analyti-
cally, with certain restrictions placed on the shape of the pref-
erence function it may be possible to compute it directly. Al-
ternatively, we can estimate it numerically (e.g. Monte Carlo
integration), or even perform crude but fast estimation based
on the expected value. IfC precedesB (x ≤ 0), then in-
tuitively the planner does not require any knowledge about
the expected time ofC in order to deduce the preferred time
to executeB dynamically (the soft constraint onAB in this
case can be derived from that ofBC). However, recall that
we focus only on the situation of static execution, in which
knowledge aboutC is not available at planning time. This
means that the predictive models of the Precede case are rel-
evant to planning the Follow case: the same technique can be
followed. Finally, for static execution the same also applies if
B andC are unordered (w < 0, x > 0).

To derive the induced constraints for general STP3 net-
works, we consider all triangles separately, propagating the
effects of one operation to neighboring triangles, until the net-
work is quiescent. Thus, the structure of the algorithm is simi-
lar to determining path-consistency in an STP network. Prop-
agation requires an operation of combining local preference
functions. The same combination operator as that used for
determining local consistency for preference networks[14]
can be applied here for propagating soft constraints. After
the network has reached quiescence, the planner can safely
discard the probability density functionspXY in Cu. Remov-
ing them results in the underlying STPP, which can be solved
by the chop method[9].

The following result summarizes these core ideas. It will
be proved informally and illustrated by an example. Follow-
ing terminology in[12], an STP3 will be said to bepseudo-
controllable if no interval in an uncertainty constraint is
“squeezed” as the result of performing step 1 above (comput-
ing the minimal network). We refer to the STP3 that results
from performing step 2 above as theinduced STP3.

Theorem 1 Given an STP3 with the following properties:

1. The input preference functionspij are linear or semi-
convex piecewise linear (intuitively, semi-convex piece-
wise linear means that there are no “V” shaped seg-
ments);

2. The STP3 is pseudo-controllable;

3. The probability distributions on the uncertainty con-
straints are normal;

then, using the method described above, the set of expected
globally preferred solutions to the initial STP3 can be com-
puted in polynomial time.

The first condition of the theorem is needed to ensure that
the induced STP3 has only functions that are semi-convex,
which is required for the application of the chop solver
method in step 3 (a polynomial-time procedure). Steps 2 and
3 are required to simplify the induced functions to linear func-
tions involving expected values (see the example below). The
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Figure 4: Example of Induced Preferences

conclusion of the proof consists of observing that the underly-
ing procedures applied in the method (all-pairs shortest path,
the local-consistency technique for deriving induced prefer-
ences, the chop solver, and numerical integration for deter-
mining the expected values) are all polynomial.

To illustrate step 2 of the method in the general case, con-
sider the STP3 in Figure 4. This problem consists of two
decision constraints onBC andBD with associated prefer-
ence functionsf, g defined,f clearly preferring larger dura-
tions betweenB andC, andg preferring smaller durations.
Two uncertainty constraints onAC andAD consist of nor-
mal probability density functionsp1 andp2 with means and
standard deviations indicated in parentheses. The goal is to
infer the induced preference functionh on AB (the network
is already minimal).

First, considering the triangleABC, one induced function
for h arises as follows:

h1(t) =

∫

10

0

f(t′ − t)p1(t
′)dt′

=

∫

10

0

[t′ − t]p1(t
′)dt′

=

∫

10

0

t′p1(t
′)dt′ − t

∫

10

0

p1(t
′)dt′.

Notice that because of the pseudo-controllability of the net-
work (it being already minimal), the last equation reduces to
E(T1)−t, since then

∫

10

0
p1(t

′)dt′ = 1 and
∫

10

0
t′p1(t

′)dt′ =
E(T1), whereE(T1) is the expected value of the random vari-
able T1 associated with the duration. A similar derivation
based on the triangleABD then results in another induced
functionh2(t) = 10−[E(T2)−t]. The final induced function
h becomes the combination ofh1 andh2: e.g. the intersection
of the areas under the functions.

This approach can be generalized for regression over semi-
convex piecewise linear preference functions. LetfBC be
the intersection ofn linear segmentsf1

BC , . . . fn
BC , where for

eachk, [ak
BC , bk

BC ] is the segment for whichfBC = fk
BC .

When regressingpAC overfBC to compute the induced pref-



erence functionhAB, we have:

hAB(t) =

∫ bn

a1

fBC(t′ − t)pAC(t′)dt′

=
∑

k=1,...,n

∫ bk

ak

fk
BC(t′ − t)pAC(t′)dt′,

which simplifies the calculation to sums involving linear
functions.

This example shows how with suitable restrictions on the
shapes of the preference functions and on whether the all-
pairs computation eliminates any of the probability mass, the
computation of induced preferences can be made efficient.

6 Discussion and Future Work
We have examined temporal reasoning under the interactions
of preferences and quantitative uncertainty in the contextof
constraint-based planning. In addition to the formulationof
the STP3 framework, which augments the Simple Temporal
Problem with both preferences and probabilities, the main
contribution of this paper is to formulate two planning de-
cision problems. Utilizing standard methods from decision
theory, probability theory, and recent advances in constraint
satisfaction, we have shown how flexible temporal plans can
be generated that are most preferred based on what the plan-
ning agent believes about the expected times of events; and
how the agent can update its preferences, given its beliefs.

Fundamentally, preferences and uncertainty are orthogonal
aspects of the decision problem. Both planning decisions we
have considered are approaches to combining the two aspects;
which is most relevant depends on the aim of the planning
agent and the questions being asked of it. The first decision,
to evaluate the probability of a plan existing with at least a
given preference, is useful to determine whether a plan branch
can meet a minimum quality threshold. The second decision,
to update preferences based on beliefs, is useful to factor the
uncertainty into a single criterion for plan evaluation. Besides
these two decision problems, the proposed framework can be
applied to related problems; for instance, an agent might seek
to determine the maximal preference level at which a solu-
tion exists with a given probabilityp. Whenp = 1 and the
probabilities are uniform, this corresponds to certain forms of
strong controllability addressed in[15].

Future theoretical efforts include characterizing more fully
the computational complexity of STP3s, and refining the
bound on the probability that a plan exists with given qual-
ity w.r.t. preference. In addition to implementing the methods
described in this paper, our major next step is to extend the
results here to address issues in planning under a dynamic
execution strategy. Of particular importance will be to exam-
ine the interactions between preferences andwait constraints
that emerge when determining the controllability of flexible
plans, as described in[11].
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